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We present a new 1D algorithm for computing the global one-dimensional unstable
manifold of a saddle point of a map. Our method can be generalized to compute two-
dimensional unstable manifolds of maps with three-dimensional state spaces. This is
shown here with a quasi-2D (Q2D) algorithm for the special case of a quasiperiod-
ically forced map, which allows for a substantial simplification of the general case
described in Krauskopf and Osinga (1998). The key idea is to “grow” the manifold in
steps, which consist of finding a new point on the manifold at a prescribed distance
from the last point. The speed of growth is determined only by the curvature of the
manifold, and not by the dynamics.

The performance of the 1D algorithm is demonstrated with a constructed test
example, and it is then used to compute one-dimensional manifolds of a map modeling
mixing in a stirring tank. With the Q2D algorithm we compute two-dimensional
unstable manifolds in the quasiperiodically forced H´enon map. c© 1998 Academic Press

1. INTRODUCTION

Many interesting dynamical systems are given by a map from a state space to itself,
describing the evolution of a state of the system by iteration. The map may either be
explicitly defined, as for example the H´enon map [12] and the Ikeda map [11, 16], or
appear in the form of the Poincar´e map of a vector field, as in the forced Van der Pol
and Duffing oscillators [10]. Of great importance for understanding the dynamics is the
knowledge of the stable and unstable manifolds of invariant objects of saddle type, such as
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saddle points and invariant circles and tori. These manifolds organize the global dynamics
of the system and they can have extremely complicated embeddings into the phase space. A
transverse intersection of stable and unstable manifolds leads to horseshoe dynamics [25]
and is responsible for transport between different regions of phase space [31]. Furthermore,
stable manifolds form boundaries between different attractors, and their bifurcations can
lead to sudden changes of the attractor [9, 11].

Stable and unstable manifolds are global objects that usually cannot be found analyti-
cally, but need to be computed numerically. In many applications one wants to compute
increasingly larger pieces of (un)stable manifolds, starting from the saddle point (or circle,
or torus), up to a prescribed arclength. Almost all algorithms for the compuation of one-
dimensional manifolds use iteration of a fundamental domain; see Section 2. This cannot be
used for two-dimensional manifolds, because any initial mesh of a fundamental domain for
a two-dimensional manifold will quickly degenerate under just a few iterations; see [20].

In this paper we present a 1D algorithm for computing the one-dimensional unstable
manifold of a fixed point that can be generalized to compute two-dimensional manifolds.
The main idea is to grow the manifold independently of the dynamics in steps as a list of
points. At each step a new point is added at a prescribed distance1k from the last point. In
order to achieve a good approximation, the distance1k must change from step to step with
the curvature of the manifold. We monitor the quality of the approximation with the strategy
of Hobson [13]. The performance of this method is demonstrated with two examples: the
shear map, a constructed test example, and a blinking vortex map modeling chaotic fluid
dynamics in a stirred tank; compare [1, 17, 30]. Examples of computed (un)stable manifolds
of Poincaré maps can be found in [18, 19].

We then present a method for the special case of the two-dimensional unstable manifold
of a quasiperiodically forced map, which we call the quasi-2D (Q2D) algorithm. This
algorithm is a true generalization of the 1D algorithm, and it is substantially simpler than
that for the general case of a two-dimensional unstable manifold in [20]. Note that the only
other (and very different) method for two-dimensional manifolds of maps is the method of
outer approximation in [5, 6, 23]. As an example, we compute the unstable manifold of an
invariant circle of the quasiperiodically forced H´enon map. This map is studied in [29] as
an example of a map with a strange nonchaotic attractor.

The paper is organized as follows. In Section 2 we introduce some notation and give a
brief overview of other methods for computing one-dimensional manifolds. In Section 3 we
explain the 1D algorithm and demonstrate its performance with two examples. Section 4
explains how our method can be generalized to obtain the Q2D algorithm. All pictures of
manifolds are visualized with Mathematica [32], except Fig. 7, which was rendered with
Geomview [27].

2. BACKGROUND

We first discuss the computation of one-dimensional manifolds. To keep the exposition
simple, we stay in the context of planar diffeomorphisms; that is, we assume that the map
is differentiable and has a differentiable inverse. In this setting the only invariant set of
saddle type with (nontrivial) stable and unstable manifolds is a saddle point. Suppose we
are given an orientation preserving diffeomorphismf : R2 →R2. (This is not a restriction: if
f is orientation reversing, consider its second iterate.) Letx0 be a saddle point off . Hence,
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f (x0) = x0 and the JacobianD f (x0)has two real eigenvaluesλs andλu with 0< λs < 1< λu.
The unstable manifold ofx0 is defined as

Wu(x0) := {x ∈ R2 | f −n(x) → x0 asn → ∞},

where f n denotes thenth iterate of f . Note that, sincef is a diffeomorphism, the stable
manifoldWs(x0) of f is the unstable manifold of the inversef −1. The Unstable Manifold
Theorem [24] guarantees the existence of thelocal unstable manifold

Wu
loc(x0) := {x ∈ Wu(x0) | f −n(x) ∈ U for all n ∈N},

in a suitable neighborhoodU of x0. Furthermore, it states thatWu
loc(x0) is tangent to the

unstable eigenspaceEu(x0) of λu.
The idea behind most algorithms is to globalize the local unstable manifoldWu

loc(x0) by
iterating a fundamental domain. Pick a pointp∈ Wu

loc(x0), such thatf (p) ∈ Wu
loc(x0). Then

the piece ofWu
loc(x0) betweenp and f (p) is a fundamental domainFp, meaning that all

orbits on the branch ofWu(x0) containingp have exactly one point inFp. In particular, the
iterates ofFp will cover this branch ofWu(x0). To use this idea one needs to compute an
approximation ofWu

loc(x0) in a neighborhood ofx0. Often the linear approximationEu(x0)

suffices [33]; see [14, 15, 22, 28] for higher-order approximations ofWu
loc(x0). Note that it is

not possible to iterateFp as a continuous object, but only as a finite set of points. This results
in a set of points approximatingWu(x0). Extra points must be added in the computation to
ensure a good quality of the approximation. There are two strategies: In [28, 33] iterates are
taken from points in the original fundamental domainFp. The alternative is to approximate
points in the current iterate of the fundamental domain and apply the map once; this is done
in [13, 26].

Our method goes even beyond that by abandoning the idea of iterating a fundamental
domain. The idea is to produce a list of points onWu(x0) by successively adding new points
at prescribed distances from the last point. New points are found asf -images of suitable
points from the part we already computed. We stress that the idea of growing the manifold
for a prescribed distance in each step has an immediate parallel in higher dimensions; see
Section 4.

There are two methods that do not use iteration of a fundamental domain, which can also
be used to compute unstable manifolds of higher dimension. First, there is the computation
of straddle trajectorieson codimension-1 unstable manifolds [21]. This method is compu-
tationally expensive and runs into difficulties if the manifold is complicated. Second, there
is the method of finding anouter approximationof Wu(x0) by rectangular cells [5, 6, 23].
This method is very useful to get a global picture of a compact invariant manifold of mod-
erate dimension, and it can also be used to compute invariant measures [7]. However, it
does not give the parametrization of the manifold by arclength and may have difficulties
showing small details.

3. THE 1D ALGORITHM

Starting with a linear approximation of the local unstable manifold our algorithm grows
the manifold up to a prespecified arclengthl with a speed depending on the curvature. The
1D algorithm has recently been implemented for use in the DsTool [2] environment; see
[19] for details.



                  

GROWING 1D AND Q2D UNSTABLE MANIFOLDS OF MAPS 407

FIG. 1. The next pointpk+1 = f (q) is chosen at (approximately) distance1k from pk.

Recall thatf : R2 →R2 is an orientation preserving diffeomorphism with a saddle point
f (x0) = x0. The algorithm produces a listP = {p0, p1, . . . , pN} of mesh points on the
unstable manifoldWu(x0) starting with the fixed pointp0 = x0 and the pointp1 at a small
distanceδ from x0 in the unstable eigenspaceEu(x0). The total numberN of points is
variable and depends on the accuracy of the computation and the requested arclengthl .
During the computation we need thecontinuous object Wupl (x0), which is the piecewise
linear approximation of the computed part ofWu(x0) formed by the line segments between
consecutive mesh points. Initially,Wu

pl (x0) is the interval [p0, p1]; that is, it is the linear
approximation ofWu

loc(x0). As we grow the manifold, points are added toP in steps, and
Wu

pl (x0) changes accordingly.
We now describe a single step and suppose thatP = {p0, p1, . . . , pk} is already known.

The next pointpk+1 should have the property that the line segment [pk, pk+1] accurately
approximatesWu(x0). Hence, the curvature ofWu(x0) determines the allowed distance
betweenpk and pk+1. The idea is to use a guess1k for this distance and find a candidate
for pk+1. Then we use the strategy of [13] to determine whether the guessed distance1k

was acceptable, meaning that the interpolation error is within the desired accuracy. How
this is done is explained in the next section.

Using the estimate1k, we want to findpk+1 in a small annulus around the circle centered
at pk with radius1k; see Fig. 1. To this end, we search inWu

pl (x0) for the line segmentL
that is mapped byf to a curve which intersects the circle with centerpk and radius1k. We
start this search with the line segment inWu

pl (x0) that contains the preimage ofpk and move
linearly throughWu

pl (x0). OnceL is found, we use bisection to find a pointq ∈ L such that

(1 − ε)1k < ‖ f (q) − pk‖ < (1 + ε)1k.

The uncertainty factorε is used to reduce the number of bisection steps. (In Section 3.3 this
value is fixed toε = 0.2.)

The point pk+1 := f (q) is a candidate for the next point inP. We will accept f (q)

provided our guess for the distance1k was not too large, according to the criterion in the
next section. If1k is acceptable thenpk+1 = f (q) is added toP, [ pk, pk+1] is added to
Wu

pl (x0), and the step is complete. However, if1k was too large then we rejectf (q), halve
the estimate1k, and repeat the process.

It may not be possible to find a pointpk+1 at (approximately) distance1k from pk. This
occurs whenWu(x0) is of finite arclength, becauseWu(x0) is attraced to a point attractor.
In this situation we also halve1k and try again. We detect convergence of the manifold to
an attractor if1k drops below a predefined bound.
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3.1. Monitoring the Distance1k

For completeness we describe our method for monitoring the distance1k, which is (a
slight variation of) Hobson’s strategy in [13]. We say thatWu

pl (x0) accurately approximates
Wu(x0) if the maximal errorεpl betweenWu

pl (x0) and the corresponding first finite piece
of Wu(x0) is small. The errorεpl depends on the distances1k between consecutive mesh
points. In order to keep the interpolation error on the linear line segment ofWu

pl (x0) small,
the allowed distance between mesh points must be adapted to the local curvature ofWu(x0).
If Wu(x0) is locally almost a straight line, only a few mesh points are required, whereas
many points are needed whereWu(x0) has sharp folds.

Assume that we have found a candidatepk+1 = f (q) in a small annulus around the
circle with centerpk and radius1k. We need to check whether1k is an allowed distance.
To determine this, we approximate the angleα between the lines throughpk−1, pk and
pk, pk+1, by

αk = ‖ p̄ − pk−1‖
‖pk − pk−1‖ , (1)

where p̄= pk + (pk − pk+1)/‖pk − pk−1‖; compare [13]. Then, we check the conditions

αmin < αk < αmax
(2)

(1α)min < 1kαk < (1α)max,

where the bounds are four prespecified control parameters. The first condition states that
αk should be small, which will avoid that the algorithm cuts off edges in sharp folds. The
second condition controls the local interpolation error.

If both αk < αmax and1kαk < (1α)max then1k is acceptable. We use1k+1 = 1k unless
1k is rather small, that is, when bothαk < αmin and1kαk < (1α)min. In this case, we set
1k+1 = 21k. On the other hand, ifαk ≥ αmax or 1kαk ≥ (1α)max then1k is too large, and
we set1k = 1

21k and try again. Similar to [13], we use a lower bound1min on1k.

3.2. Discussion of the Accuracy

The accuracy of a computation depends on the distribution of mesh points and the initial
distance alongEu(x0). The initial error between the first line segment in the linear unstable
eigenspaceEu(x0) and the local unstable manifoldWu

loc(x0) is controlled by the initial
distanceδ from the fixed pointx0. SinceWu(x0) is a collection of f -images ofWu

loc(x0),
and since forward iterates converge in stable directions nearx0, this initial error will be
damped in a neighborhood of the fixed point. However, outside a local neighborhood, the
initial error grows with the number of iterates of the line segment that are needed to cover
the computed part. We get an additional errorεI from the interpolation between the mesh
points, because we grow the manifold by taking images of interpolated points. In [13] it is
shown that the interpolation errorεI is controlled by keeping the product1kαk small. The
total errorεpl depends on the initial error and the interpolation error. Because we compute
only a finite piece ofWu(x0), εpl is bounded, and it goes to zero forδ → 0 andεI → 0; we
refer to the proofs in [13] and [20].

A special issue is the problem of cutting off folds. It may seem that the 1D algorithm
cuts off sharp folds, because the pointpk might have been chosen on the returning branch;
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FIG. 2. A situation where part of the manifold might be missed.

see Fig. 2. The pointpk would have been accepted, because1k−1 = ‖pk − pk−1‖ andαk−1

satisfy (2). However, an early jump to the returning branch can only occur when the fold
is very sharp and the preimage betweenpk−1 and pk is contained in a single interval. By
properly choosingαmax we can ensure that this is not the case, since a sharp fold generally
has a milder fold as preimage. In other words, instead ofpk, the other candidatẽpk is found,
and the fold is not missed; see Fig. 2 and the examples in the next section.

The above arguments show that a finite piece of the unstable manifold can be computed
with any desired precision if the accuracy parameters are chosen small enough. The main
problem of any global manifold computation is that, in general, a priori bounds on the
accuracy parameters are not available. A good way to check the accuracy in practice is to
repeat the computation with increased accuracy and to compare the results.

3.3. Examples of 1D Manifolds

In this section we demonstrate the 1D algorithm with two planar maps, the shear map and
the IBV map, that we feel are ideal for testing any algorithm for the computation of global
unstable manifolds. The shear map, a constructed example, has homoclinic tangencies to
a segment of the coordinate axes. The IBV map is a generalization of a map in [1, 17]
describing chaotic fluid mixing in a stirred tank, and it is characterized by strong recursive
spiraling. See also [18, 19] for (un)stable manifolds of the Poincar´e map of the forced
damped pendulum and of the forced Van der Pol oscillator, respectively.

3.3.1. The shear map.In this section we introduce theshear map, a one-parameter
family of diffeomorphisms onR2, with the following special properties. The origin is
always a saddle point such that the stable and unstable manifolds contain parts of the
coordinate axes. Furthermore, the family has a first homoclinic tangency for a particular
parameter value, calledc∗. Since one of the manifolds involved in the tangency is equal
to a coordinate axis near the origin, we can approximatec∗ by checking whether the other
manifold returns tangent to this axis.

An abstract presentation of the shear map can be found in [25]. Here, we give a concrete
definition. We start with the linear map

φ

(
x
y

)
=
(

λux
λsy

)
,

where 0< λs ≤ (λu)−1 < 1 are fixed. Clearly, the origin0 is a saddle point ofφ and its stable
and unstable manifolds are the coordinate axes. Consider now the one-parameter family of
maps

ψc

(
x
y

)
=
(

x − c f (x + y)

y + c f (x + y)

)
,
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FIG. 3. Stable and unstable manifolds of the origin of the shear map before (top), approximately at (bottom
left), and after (bottom right) the first tangency. (c= 0.5,c= 0.75,c= 0.811580, andc= 0.9, respectively; branch
of Wu(0) computed up to arclength 100, branch ofWs(0) computed up to arclength 5000.)

where

f (z) =
{

0 for z ≤ 1
(z − 1)2 for z > 1.

The mapψc shears the plane, because it is a drift of magnitude
√

2c f (x + y) along the
diagonal lines{(x, y) | x+y = const> 1}. The shear map is now defined as the composition

9c = ψc ◦ φ. (3)

By construction of9c the origin0 is a saddle point for anyc, with eigenvaluesλu andλs. Fur-
thermore, the interval{x ∈ (−∞, 1], y = 0} is contained inWu(0), and{y ∈ (−∞, (λs)−1],
x = 0} is contained inWs(0). There is a first homoclinic tangency for a particularc∗ ∈ [0, λu];
see [18, 25].

Throughout our computations we have chosenλs = 0.4 andλu = 2.0. Figure 3 shows the
stable and unstable manifolds before the tangency forc= 0.5 andc= 0.75 (top), approx-
imately at the tangency forc= 0.811580 (lower left), and after the tangency forc= 0.9
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FIG. 4. Enlargement near the fixed point (left) of Fig. 3, and of a part ofWu(0) (right) showing the distri-
bution of the computed points. (c= 0.811580; branch ofWu(0) computed up to arclength 100.)

(lower right). The accuracy wasαmin = 0.2, αmax= 0.3, (1α)min = 10−6, (1α)max= 10−5,
and1min = 10−4. (Recall thatε = 0.2 in all computations.) We choseδ = 10−3 < 1, such
thatWu

loc(0) andWs
loc(0) are exact. The respective unstable branches have been computed up

to arclength 100, and the stable branches up to arclength 5000. (The stable manifolds make
very long excursions into the lower half plane.) The arclength of the unstable manifold
is finite for c< c∗, but goes to infinity asc→ c∗. Indeed, forc= 0.5 the computation of
Wu(0) stops at arclengthl = 19.53 when1k < 10−12. For c= 0.8 the arclength ofWu(0)

is already larger than 100.
Figure 4 (left) shows an enlargement near the origin at the approximate moment of first

tangency (c= 0.811580). A numerically found tangency is never exactly a tangency. Due
to the3-Lemma [24], this will become clearly visible for a suitable iterate, that is, when
longer pieces of the manifolds are computed. Making sure thatWu(0) and Ws(0) have
tangencies along the entire computed arclength allows one to find the value ofc∗ with any
precision. (We foundc∗ ≈ 0.811580, which is precise up to five digits.) Clearly, this also
requires one to computeWu(0) and Ws(0) with sufficient accuracy. It is an interesting
observation that looking at long pieces ofWu(0) andWs(0) also allows one to check the
accuracy of the computed manifolds themselves. If one looks closely one notices that the
last loop ofWs(0) just intersectsWu(0). On the other hand, the last loop ofWu(0) just
missesWs(0). This is theoretically impossible, and it shows thatWu(0) andWs(0) have not
been computed accurately over the entire prescribed arclength. The solution is to choose
higher accuracy, which would allow us to make sure that all computed tangencies lie on the
coordinate axes.

To give an idea of how the mesh depends on the curvature, Fig. 4 (right) shows an
enlargement of the unstable manifold forc= 0.811580. The points are not connected to
show their distribution, which is clearly adapted to the curvature. Note that the distance
between neighboring points varies slightly because of the uncertainty factorε = 0.2.

3.3.2. The IBV map.We consider a planar map of the complex plane, which we call
the IBV map, modeling two independent blinking vortices in an infinitely large container
with a thin layer of fluid (with possible injection or drainage of fluid at the vortices). This
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FIG. 5. Homoclinic tangle of the fixed pointz0 ≈ 0.241988i of the conservative IBV map with the same
direction of rotation. (b1 = b2 = 1, µ1 = µ2 = 0.08; all branches computed up to arclength 100.)

map is a generalization of Aref’s blinking vortex map in [1, 17], which was introduced as
an idealized model of chaotic mixing. Recently, the dynamics near one vortex was studied
in [30]. A vortex at the origin is described by the map

Rµ,b(z) = bz exp

(
2π i

µ

|z|2
)

, Rµ,b(0) = 0,

whereµ specifies the amount of rotation at the unit circle, andb∈ (0, ∞) models injection
or drainage of fluid. The IBV map is now obtained by considering two independent vortices
v1 at+1 andv2 at−1. We first shift the pointv1 to the origin, apply a vortex map, shift the
point v2 to the origin, apply another vortex map, and finally shift the origin back tov2. In
other words, the IBV map is the composition

8µ1,b1,µ2,b2 = T−1 ◦ Rµ2,b2 ◦ T2 ◦ Rµ1,b1 ◦ T−1, (4)

whereTc(z) = z+c is the translation byc. The IBV map (4) is continuous, has a continuous
inverse onC, and is differentiable onC\{+1, 1−2 exp(−π i µ1b2

1/2)/b1}. The map depends
on four real parameters and has rich dynamics. The conservative case (b1 = b2 = 1) with the
same direction of rotation (µ1 = µ2) reduces to Aref’s blinking vortex map [1, 17]. The map
studied in [30] can be interpreted as the limitµ1, µ2 → 0 in a rescaled neighborhood of one
of the vortices. Note that the map8 also allows one to consider the case of counterrotating
vortices (µ1 = −µ2), which does not seem to have been studied.

First we consider an example of the conservative case of corotating vortices studied
in [1, 17]. We setb1 = b2 = 1 and µ1 = µ2 = 0.08, for which 8 has the saddle point
z0 ≈ 0.241988i . Its stable and unstable manifolds, both computed up to arclength 100, form
the homoclinic tangle shown in Fig. 5; compare Fig. 12 in [17]. Note that, by virtue of the
map, the unstable manifold is the image of the stable manifold under the symmetry transfor-
mationz 7→ −z̄. The size of the lobes of the homoclinic intersections determines how much
fluid is transported between the two sides of the figure-eight-shaped region. The accuracy
of the computation isδ = 10−3, αmin = 0.2, αmax= 0.3, (1α)min = 10−5, (1α)max= 10−4,
and1min = 5× 10−3.
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FIG. 6. The strange attractor (left) of the dissipative IBV map with opposite directions of rotation attracts
one branch of the unstable manifold of the fixed pointz0 ≈ −1.49477− 3.17655i (right). (b1 = 1.05, b2 = 0.9,

µ2 = −µ1 = 0.25; branch ofWu(x0) computed up to arclength 10,000.)

As a second example we choose a case of counterrotating vortices with injection and
drainage, namely,b1 = 1.05, b2 = 0.9, andµ2 = −µ1 = 0.25. Then8 has the strange at-
tractor shown in Fig. 6 (left). This has been obtained with DsTool [2] by recording 20,000
iterates after discarding a sufficiently long transient. We computed one branch of the
unstable manifold of the saddle pointz0 ≈ −1.49477− 3.17655i up to an arclength of
10,000. To keep the amount of data manageable we used the relatively low accuracy of
δ = 10−3, αmin = 0.2, αmax= 0.3, (1α)min = 10−3, (1α)max= 10−2, and1min = 5× 10−3,
which resulted in a total of 289,594 mesh points. The manifold is shown in Fig. 6 (right).
While it is attracted to the strange attractor, it spirals repeatedly and recursively into the
center of the picture, before making spiraling excursions into the “fingers.” Hence, the un-
stable manifold gives better insight into the dynamics on the attractor. A very long piece of
the manifold is needed in order to see excursions to the fourth finger. One can get an idea of
the accuracy of the computation by noticing that the tips of all four fingers indeed coincide
with the respective tips of the attractor; compare the two panels of Fig. 6.

4. THE Q2D ALGORITHM

Quasiperiodically forced systems appear naturally in systems with two different periodic
forcings of incommensurable frequencies. By taking the Poincar´e map, or stroboscopic
map, corresponding to one of these frequencies, one obtains a discrete dynamical system
of the form

f

(
ϑ

x

)
=
(

ϑ + ω

f1(ϑ, x)

)
, (5)

whereϑ ∈ [0, 1) andx ∈Rn. Here,ω ∈R\Q is the irrational ratio between the two frequen-
cies, andf1 is periodic inϑ with period 1. Quasiperiodically forced systems have drawn
special attention because they exhibit transitions to chaos via so-called strange nonchaotic
attractors that seem to be unique to this class of dynamical systems; see [8, 29]. We consider
the casen = 2 such that (5) has a three-dimensional state space.
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Because of the quasiperiodic forcing, the smallest invariant sets of (5) are closed invariant
curves that can be parametrized byϑ . When restricted to such an invariant circle, the system
is just a rigid rotation with irrational rotation numberω. Let us assume that (5) has an
invariant circleH = {(ϑ, h(ϑ) | ϑ ∈ [0, 1)} of saddle type with a two-dimensional unstable
manifold, denoted byWu(H).

In order to computeWu(H) we consider its intersection curves with planes of the form
Fθ = {(ϑ, x) | ϑ = θ}. These planes foliate the phase space [0, 1) ×R2. Because of the
special structure of (5), the linear foliation{Fθ }θ∈[0,1) is f -invariant,H intersects each leaf
Fθ in a unique point, andWu(H) intersectsFθ in a unique curve for allθ ∈ [0, 1).

The idea is now to grow the intersection curvesWu(H) ∩Fθ simultaneously in a pre-
scribed number of leaves. We take a finite number of leavesFθ by choosing a meshM on
[0, 1), equally spaced for simplicity. As starting data we need to knowH ∩ {Fθ }θ∈M , to-
gether with the linear unstable directions given as vectors{vu(θ)}θ∈M . Both can be obtained
with the method in [3, 4, 22]. The manifold is represented in the form of the list{Pθ }θ∈M

of sequencesPθ of points onWu(H) ∩Fθ .
Again, we growWu(H) in steps, where in each step one point is added toeach Pθ for

all θ ∈ M . To this end, for eachθ ∈ M we need to find a pointq that gets mapped into
Fθ at distance1k from the last point inPθ . Because of the structure of (5),q ∈Fθ−ω,
so that we can findq in the unique curveWu(H) ∩Fθ−ω by bisection just as for the 1D
algorithm. Note thatθ − ω will not be in the meshM . Therefore, we approximateWu(H) ∩
Fθ−ω as a list of pointsPθ−ω by linear interpolation with its direct neighbors, sayPθ1 and
Pθ2, by

Pθ−ω(i ) = Pθ1(i ) + θ1 − (θ − ω)

θ1 − θ2

(
Pθ2(i ) − Pθ1(i )

)
.

In Pθ−ω we now search forq exactly as we did in the 1D algorithm.
The distribution of points inPθ is adapted to the curvature ofWu(H) ∩Fθ , such that

Wu
pl (θ) is a good approximation ofWu(H) ∩ Fθ ; see Section 3.1. To ensure the quality of

the two-dimensional mesh{Pθ }θ∈M we would like to have uniform growth in each leaf. This
is also important for keeping new points in neighboring leaves quite close together, which
ensures the quality of the interpolated sequencesPθ−ω. Ideally, at stepk the distance1k of
the last point to the newly added point inPθ is the same for allθ ∈ M . (Clearly,1k must
be such that the accuracy ofWu

pl (h(θ)) is acceptable for allθ ∈ M .) However, a fold in the
manifold, requiring more mesh points or slower growth, is typically reached at different
arclength distances fromH in each leaf. Slowing to the speed in the “slowest” leaf creates
unnecessarily many mesh points in the other leaves.

To avoid producing too many points we proceed as follows. Note that in terms of the mesh
quality the fundamental length scale is the distance between neighboring leaves of{Fθ }θ∈M

(which is 1/|M | for an equally spaced mesh). At stepk, we determine the acceptable
distance1θ in Pθ for eachθ ∈ M . If 1k = minθ∈M 1θ is still relatively large (compared to
the distance between neighboring leaves) then we grow the manifold for the same distance
1k in each leaf. Otherwise, we allow variable steps, but such that maxθ∈M 1θ is small
enough. This works particularly well if the manifold folds over the entireθ -range, but at
different arclength distances in different leaves; see Fig. 7 (left). We remark that permitting
different1θ -steps in different leaves also allows the two-dimensional manifold to converge
to an attractor.
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FIG. 7. The quasiperiodically forced H´enon map forA= 0.1, b= 0.68, andc= 0.1 (left), and A= 0.7,
b= 0.77, andc= 0.1 (right). Initial data at 50 mesh points with the attractors (top), the curvesWu(H) ∩Fθ for
50 θ -values (middle), and the manifold as a surface (bottom).

4.1. Examples of Q2D Manifolds

We illustrate the Q2D algorithm with the quasiperiodically forced H´enon map

f

ϑ

u
v

 =

 ϑ + ω

1 + v − bu2 + Acos(2πϑ)

cu

 , (6)

where we fixω = 1
2(

√
5− 1). This map is studied in [29] and is used in [20] as an example

for the general algorithm.
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First we chooseA= 0.1,b= 0.68, andc= 0.1. Then (6) has an invariant circleH of saddle
type with a two-dimensional unstable manifold that is attracted to a pair of circles of period
two, folding infinitely often in the process. We chose 100 equally spaced mesh points onH
and computed the starting data with the method in [3, 4, 22]. Figure 7 (top left) shows the
circle H with the linear stable and unstable directions, and the period-two attracting circles.
For the accuracy parameters we usedδ = 0.01, αmin = 0.2, αmax= 0.3, (1α)min = 10−5,

(1α)max= 10−4, and1min = 10−4. In order to keep the mesh squared, we brought back the
uncertainty factor toε = 0.01. Figure 7 (middle left) shows the intersection curves of every
second leaf, computed up to arclength 10. The manifold itself is shown in Fig. 7 (bottom
left), where the gray bands show the steps taken in the Q2D algorithm. We previously
computed the same manifold with the general algorithm, but could only get to the second
fold; compare Fig. 11 in [20]. With the Q2D algorithm we can compute many more folds.
This is clear from Fig. 8 (left), which shows the intersection of the manifold withF0.1 and
two enlargements thereof.

As a second example we chooseA= 0.7, b= 0.77, andc= 0.1. Then the invariant cir-
cle H still exists, but there is now a strange (and chaotic) attractor; compare Fig. 1(c) in
[29]. Figure 7 (top right) shows the starting data and the attractor. We computed the un-
stable manifoldWu(H), again with 100 leaves and the same accuracy as above. Figure 7
(middle right) shows the intersection curves of every second leaf, again up to arclength
10, and Fig. 7 (bottom right) shows the manifold itself. As our computation shows, the
unstable manifold converges to the strange attractor. The intersection of the unstable man-
ifold with F0.1 and two enlargements are shown in Fig. 8 (right). An approximation of
the intersection of the strange attractor withF0.1 was found by iterating 1000 points. The
attractor intersects this leaf in what appears to be a curve, approximated by the bold dots in
Fig. 8 (right). Animations showing how manifolds are grown by the Q2D algorithm can be
found at http://www.nat.vu.nl/vakgroepen/theorie/english/publications/
eprints/vuth98-21/vuth98-21.html.

4.2. Remarks on the General Case

The idea of growing the intersection curves of a two-dimensional unstable manifold with
a set of planes is also behind the general 2D algorithm in [20]. The general algorithm can
be used for the special class of quasiperiodically forced systems, but the specialized Q2D
algorithm is superior. It is powerful and fast, because it is a true generalization of the 1D
algorithm.

The special purpose Q2D algorithm performs better for the following reasons. In general,
any foliation of phase space by planes isnot invariant under the map. This means that we
do not know a priori in which leaf we should look for the pointq. Consequently, we have
to do a more time-consuming 2D search. A major disadvantage of a 2D search is that one
lacks a clear direction in which to look forq starting at the preimage of the last point. If
the manifold folds sharply, then it is virtually impossible for the general algorithm to avoid
that the manifold grows “backward.” This is why the general algorithm stops at the second
fold of the manifold in Fig. 7 (left); compare Fig. 11 in [20].

Finally, for a quasiperiodically forced system, the intersection ofWu(H) with a leafFθ

is a unique curve. For a general map, this is usually not true for any chosen linear foliation.
Locally nearH it can always be achieved, but as one growsWu(H), the manifold may
become tangent to a leaf. At that point, a second intersection curve, not connected to the
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FIG. 8. Intersections of the manifolds and the attractors in Fig. 7 with the leafF0.1 (top), and enlargements
(middle and bottom).

first, appears in this leaf. In its current form, the general 2D algorithm in [20] misses this
part ofWu(H) and subsequently stops.
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Switzerland, 1996), Vol. 19, p. 449.

6. M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global
attractors,Num. Math.75, 293 (1997).

7. M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, Exploring invariant sets and invariant measures,Chaos
7, 221 (1997).

8. C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Strange attractors that are not chaotic,Physica D13, 261
(1984).

9. C. Grebogi, E. Ott, and J. A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos,Physica
D 7, 181 (1983).

10. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields(Springer-Verlag, New York/Berlin, 1983).

11. S. M. Hammel, C. K. R. T. Jones, and J. V. Moloney, Global dynamical behavior of the optical field in a ring
cavity,J. Opt. Soc. Am. B2, 552 (1985).
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