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We presentanew 1D algorithm for computing the global one-dimensional unstable
manifold of a saddle point of a map. Our method can be generalized to compute two-
dimensional unstable manifolds of maps with three-dimensional state spaces. This is
shown here with a quasi-2D (Q2D) algorithm for the special case of a quasiperiod-
ically forced map, which allows for a substantial simplification of the general case
described in Krauskopf and Osinga (1998). The key idea is to “grow” the manifold in
steps, which consist of finding a new point on the manifold at a prescribed distance
from the last point. The speed of growth is determined only by the curvature of the
manifold, and not by the dynamics.

The performance of the 1D algorithm is demonstrated with a constructed test
example, anditis then used to compute one-dimensional manifolds of a map modeling
mixing in a stirring tank. With the Q2D algorithm we compute two-dimensional
unstable manifolds in the quasiperiodically forceendh map. © 1998 Academic Press

1. INTRODUCTION

Many interesting dynamical systems are given by a map from a state space to it
describing the evolution of a state of the system by iteration. The map may eithel
explicitly defined, as for example theeHon map [12] and the Ikeda map [11, 16], o
appear in the form of the Poin@arhap of a vector field, as in the forced Van der Pc
and Duffing oscillators [10]. Of great importance for understanding the dynamics is
knowledge of the stable and unstable manifolds of invariant objects of saddle type, su
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saddle points and invariant circles and tori. These manifolds organize the global dyna
of the system and they can have extremely complicated embeddings into the phase sp
transverse intersection of stable and unstable manifolds leads to horseshoe dynamic
and is responsible for transport between different regions of phase space [31]. Furthert
stable manifolds form boundaries between different attractors, and their bifurcations
lead to sudden changes of the attractor [9, 11].

Stable and unstable manifolds are global objects that usually cannot be found an
cally, but need to be computed numerically. In many applications one wants to com
increasingly larger pieces of (un)stable manifolds, starting from the saddle point (or cir
or torus), up to a prescribed arclength. Almost all algorithms for the compuation of o
dimensional manifolds use iteration of a fundamental domain; see Section 2. This cann
used for two-dimensional manifolds, because any initial mesh of a fundamental domai
a two-dimensional manifold will quickly degenerate under just a few iterations; see [2(

In this paper we present a 1D algorithm for computing the one-dimensional unst:
manifold of a fixed point that can be generalized to compute two-dimensional manifo
The main idea is to grow the manifold independently of the dynamics in steps as a i
points. At each step a new point is added at a prescribed distanitem the last point. In
order to achieve a good approximation, the distahgenust change from step to step with
the curvature of the manifold. We monitor the quality of the approximation with the strate
of Hobson [13]. The performance of this method is demonstrated with two examples:
shear map, a constructed test example, and a blinking vortex map modeling chaotic
dynamics in a stirred tank; compare [1, 17, 30]. Examples of computed (un)stable manif
of Poincag maps can be found in [18, 19].

We then present a method for the special case of the two-dimensional unstable mar
of a quasiperiodically forced map, which we call the quasi-2D (Q2D) algorithm. T}
algorithm is a true generalization of the 1D algorithm, and it is substantially simpler tt
that for the general case of a two-dimensional unstable manifold in [20]. Note that the
other (and very different) method for two-dimensional manifolds of maps is the metho
outer approximation in [5, 6, 23]. As an example, we compute the unstable manifold o
invariant circle of the quasiperiodically forcedceH6n map. This map is studied in [29] as
an example of a map with a strange nonchaotic attractor.

The paper is organized as follows. In Section 2 we introduce some notation and g
brief overview of other methods for computing one-dimensional manifolds. In Section 3
explain the 1D algorithm and demonstrate its performance with two examples. Secti
explains how our method can be generalized to obtain the Q2D algorithm. All picture:!
manifolds are visualized with Mathematica [32], except Fig. 7, which was rendered v
Geomview [27].

2. BACKGROUND

We first discuss the computation of one-dimensional manifolds. To keep the expos
simple, we stay in the context of planar diffeomorphisms; that is, we assume that the
is differentiable and has a differentiable inverse. In this setting the only invariant se
saddle type with (nontrivial) stable and unstable manifolds is a saddle point. Suppos
are given an orientation preserving diffeomorphisnR? — R?. (This is not a restriction: if
f is orientation reversing, consider its second iterate. xb. &t a saddle point of . Hence,
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f (Xo) = Xoand the Jacobiad f (xg) hastworeal eigenvaluggandi with0 < A5 <1 < A,
The unstable manifold of; is defined as

WY(xg) := {x € R? | f™(x) — Xpash — oo},

where f" denotes theth iterate of f. Note that, sincef is a diffeomorphism, the stable
manifold WS(xg) of f is the unstable manifold of the invergel. The Unstable Manifold
Theorem [24] guarantees the existence ofitieal unstable manifold

W (X0) := {X € WY (o) | f™"(x) € U forallne N},

in a suitable neighborhood of xp. Furthermore, it states th&¥:.(Xo) is tangent to the
unstable eigenspade” (xo) of AY.

The idea behind most algorithms is to globalize the local unstable mamipldxo) by
iterating a fundamental domaifrick a pointp € W3, (Xo), such thatf (p) € Wg.(Xo). Then
the piece oWg.(xo) betweenp and f (p) is a fundamental domaiR,, meaning that all
orbits on the branch aiV"(xp) containingp have exactly one pointif. In particular, the
iterates ofF, will cover this branch ofV"(xo). To use this idea one needs to compute a
approximation ofg.(Xo) in @ neighborhood afy. Often the linear approximatioB" (xo)
suffices [33]; see [14, 15, 22, 28] for higher-order approximatioVgihf(xo). Note that it is
not possible to iteratEy, as a continuous object, but only as a finite set of points. This rest
in a set of points approximating/“(xo). Extra points must be added in the computation t
ensure a good quality of the approximation. There are two strategies: In [28, 33] iterate
taken from points in the original fundamental domE&in The alternative is to approximate
points in the current iterate of the fundamental domain and apply the map once; this is «
in[13, 26].

Our method goes even beyond that by abandoning the idea of iterating a fundam
domain. The idea is to produce a list of pointsWH(xg) by successively adding new points
at prescribed distances from the last point. New points are fourfdiamges of suitable
points from the part we already computed. We stress that the idea of growing the man
for a prescribed distance in each step has an immediate parallel in higher dimension:
Section 4.

There are two methods that do not use iteration of a fundamental domain, which can
be used to compute unstable manifolds of higher dimension. First, there is the comput
of straddle trajectorie®n codimension-1 unstable manifolds [21]. This method is comp
tationally expensive and runs into difficulties if the manifold is complicated. Second, th
is the method of finding aauter approximatiorof WY (xg) by rectangular cells [5, 6, 23].
This method is very useful to get a global picture of a compact invariant manifold of m
erate dimension, and it can also be used to compute invariant measures [7]. Howe\
does not give the parametrization of the manifold by arclength and may have difficul
showing small details.

3. THE 1D ALGORITHM

Starting with a linear approximation of the local unstable manifold our algorithm gro
the manifold up to a prespecified arclengthith a speed depending on the curvature. Th
1D algorithm has recently been implemented for use in the DsTool [2] environment;
[19] for details.
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Wi (o)

FIG. 1. The next pointp,.; = f(q) is chosen at (approximately) distanag from py.

Recall thatf : R? — R? is an orientation preserving diffeomorphism with a saddle poi
f (Xo) = Xo. The algorithm produces a li®® ={po, p1, ..., pn} Of mesh points on the
unstable manifoldV"(xg) starting with the fixed poinpy = Xp and the pointp; at a small
distances from X in the unstable eigenspa&'(xp). The total numbeiN of points is
variable and depends on the accuracy of the computation and the requested afcler
During the computation we need tleentinuous object W(xo), which is the piecewise
linear approximation of the computed partwf (xp) formed by the line segments betweer
consecutive mesh points. Initiallyjj (xo) is the interval po, p1]; that is, it is the linear
approximation of\.(Xo). As we grow the manifold, points are addedRdn steps, and
Wi (Xo) changes accordingly.

We now describe a single step and supposeRhat{po, p1, - .., Pk} is already known.
The next pointpx,1 should have the property that the line segmemt px.1] accurately
approximatesN'(xo). Hence, the curvature daiv¥(xo) determines the allowed distance
betweenpk and px,1. The idea is to use a gueag for this distance and find a candidate
for pxe1. Then we use the strategy of [13] to determine whether the guessed digtanc
was acceptable, meaning that the interpolation error is within the desired accuracy.
this is done is explained in the next section.

Using the estimaté, we want to findpy.; in a small annulus around the circle centere
at px with radiusAy; see Fig. 1. To this end, we search\/k;hJ (Xg) for the line segment
thatis mapped by to a curve which intersects the circle with cenpgerand radiusA. We
start this search with the line segmenViﬁ(xo) that contains the preimage pf and move
linearly throughV\{,L,‘(xo). Oncel is found, we use bisection to find a pomnt L such that

A—-e)Ak < [IT@ — pxll < A+ &) Ak

The uncertainty factar is used to reduce the number of bisection steps. (In Section 3.3 1
value is fixed tee =0.2.)

The point pxy1:= f(q) is a candidate for the next point iR. We will accept f (q)
provided our guess for the distanag was not too large, according to the criterion in the
next section. IfAy is acceptable thepy. 1 = f(q) is added toP, [pk, pk.1] is added to
Wi (Xo), and the step is complete. HoweverAif was too large then we rejeétq), halve
the estimate\, and repeat the process.

It may not be possible to find a poipk, 1 at (approximately) distanc&y from py. This
occurs whenW'(xp) is of finite arclength, becaudd'™ (xp) is attraced to a point attractor.
In this situation we also halvay and try again. We detect convergence of the manifold
an attractor ifAy drops below a predefined bound.
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3.1. Monitoring the Distance\

For completeness we describe our method for monitoring the distageehich is (a
slight variation of) Hobson'’s strategy in [13]. We say thid(xo) accurately approximates
WH(xo) if the maximal errorey betweenV\{;l‘(xo) and the corresponding first finite piece
of W!(xo) is small. The erroe, depends on the distancés between consecutive mesh
points. In order to keep the interpolation error on the linear line segmenjafo) small,
the allowed distance between mesh points must be adapted to the local curvaitiegs)t
If WY(xo) is locally almost a straight line, only a few mesh points are required, where
many points are needed whaig'(xp) has sharp folds.

Assume that we have found a candidgig 1= f(q) in a small annulus around the
circle with centerpy and radiusAy. We need to check whetheyy is an allowed distance.
To determine this, we approximate the angléetween the lines througpy_1, px and

Pk» Prt1, DY

1P~ Pl

— , 1
“ T pe = peall @)

wherep= px + (P« — Px+1)/ll P« — Px—1]l; compare [13]. Then, we check the conditions

Omin < 0k < Omax

@)

(Aa)min < Axak < (Ad)max

where the bounds are four prespecified control parameters. The first condition states
ax should be small, which will avoid that the algorithm cuts off edges in sharp folds. T
second condition controls the local interpolation error.

If both ok < amax @ndAgak < (Aa)max thenAy is acceptable. We usty 1 = Ag unless
Ay is rather small, that is, when both < amin and Axak < (Aa)min. In this case, we set
Axy1=2Ak. On the other hand, ifx > amax OF Axak > (Aa)max thenAg is too large, and
we setAy = %Ak and try again. Similar to [13], we use a lower boutedi, on Ay.

3.2. Discussion of the Accuracy

The accuracy of a computation depends on the distribution of mesh points and the ir
distance alonde" (xo). The initial error between the first line segment in the linear unstat
eigenspaceE (%) and the local unstable manifoMy.(Xo) is controlled by the initial
distances from the fixed pointxg. SinceW" (o) is a collection off -images ofW.(Xo),
and since forward iterates converge in stable directions xgabhis initial error will be
damped in a neighborhood of the fixed point. However, outside a local neighborhood
initial error grows with the number of iterates of the line segment that are needed to ct
the computed part. We get an additional eerpfrom the interpolation between the mest
points, because we grow the manifold by taking images of interpolated points. In [13]
shown that the interpolation errer is controlled by keeping the produsiayx small. The
total errorep depends on the initial error and the interpolation error. Because we comy
only a finite piece ofV"(xo), €p is bounded, and it goes to zero > 0 ande; — 0; we
refer to the proofs in [13] and [20].

A special issue is the problem of cutting off folds. It may seem that the 1D algoritt
cuts off sharp folds, because the pomtmight have been chosen on the returning brancl
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FIG. 2. A situation where part of the manifold might be missed.

see Fig. 2. The poinp, would have been accepted, becadse; = || px — Pk_1/l andak_1
satisfy (2). However, an early jump to the returning branch can only occur when the
is very sharp and the preimage betwa®n; and px is contained in a single interval. By
properly choosingrmax We can ensure that this is not the case, since a sharp fold gener
has a milder fold as preimage. In other words, instegukpthe other candidatg, is found,
and the fold is not missed; see Fig. 2 and the examples in the next section.

The above arguments show that a finite piece of the unstable manifold can be comj
with any desired precision if the accuracy parameters are chosen small enough. The
problem of any global manifold computation is that, in general, a priori bounds on
accuracy parameters are not available. A good way to check the accuracy in practice
repeat the computation with increased accuracy and to compare the results.

3.3. Examples of 1D Manifolds

In this section we demonstrate the 1D algorithm with two planar maps, the shear may
the IBV map, that we feel are ideal for testing any algorithm for the computation of glo
unstable manifolds. The shear map, a constructed example, has homoclinic tangenc
a segment of the coordinate axes. The IBV map is a generalization of a map in [1,
describing chaotic fluid mixing in a stirred tank, and it is characterized by strong recur:
spiraling. See also [18, 19] for (un)stable manifolds of the Pomecaap of the forced
damped pendulum and of the forced Van der Pol oscillator, respectively.

3.3.1. The shear map.n this section we introduce th&hear mapa one-parameter
family of diffeomorphisms oriR?, with the following special properties. The origin is
always a saddle point such that the stable and unstable manifolds contain parts ¢
coordinate axes. Furthermore, the family has a first homoclinic tangency for a partic
parameter value, callect. Since one of the manifolds involved in the tangency is equ
to a coordinate axis near the origin, we can approxiroatey checking whether the other
manifold returns tangent to this axis.

An abstract presentation of the shear map can be found in [25]. Here, we give a con
definition. We start with the linear map

X AUX
¢ ( y) - < A%y ) ’
where 0< A5 < (\Y)~! < 1 are fixed. Clearly, the origidis a saddle point af and its stable
and unstable manifolds are the coordinate axes. Consider now the one-parameter fan
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o 0.25 0.5 0.75 1 1.25 1.5 o 0.25 0.5 0.75 1 1.25 1.5

FIG. 3. Stable and unstable manifolds of the origin of the shear map before (top), approximately at (bof
left), and after (bottom right) the first tangenay= 0.5,c = 0.75,c = 0.811580, an@ = 0.9, respectively; branch
of W!(0) computed up to arclength 100, branchvgf(0) computed up to arclength 5000.)

where

f2) = 0 forz<1
“1@z=-1% forz>1

The mapy shears the plane, because it is a drift of magnitu@ef (x + y) along the
diagonallineg(x, y) | x+Yy = const> 1}. The shear map is now defined as the compositic

We = Yo @. (3)

By construction ofl. the originOis a saddle point for any, with eigenvalues“ andxs. Fur-
thermore, the intervgi e (—oo, 1], y = 0} is contained in¥(0), and{y € (—oo, (A%)71],
x = 0} is contained itW3(0). Thereis a firsthomoclinic tangency for a particufae [0, 1"];
see [18, 25].

Throughout our computations we have chos®a: 0.4 and\" = 2.0. Figure 3 shows the
stable and unstable manifolds before the tangencyg f00.5 andc = 0.75 (top), approx-
imately at the tangency far=0.811580 (lower left), and after the tangency for 0.9
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FIG. 4. Enlargement near the fixed point (left) of Fig. 3, and of a paMW{0) (right) showing the distri-
bution of the computed pointsc £ 0.811580; branch o#v"(0) computed up to arclength 100.)

(lower right). The accuracy Wagnin = 0.2, amax= 0.3, (A&)min=10"°, (Aa)max= 1075,
and Apin =104, (Recall thats = 0.2 in all computations.) We chosie= 102 < 1, such
thatW.(0) andWS.(0) are exact. The respective unstable branches have been compute
to arclength 100, and the stable branches up to arclength 5000. (The stable manifolds
very long excursions into the lower half plane.) The arclength of the unstable mani
is finite for ¢ < c*, but goes to infinity ag — c*. Indeed, forc=0.5 the computation of
W!(0) stops at arclength=19.53 whenAy < 10~*2. Forc= 0.8 the arclength ofV!(0)

is already larger than 100.

Figure 4 (left) shows an enlargement near the origin at the approximate moment of
tangency ¢ =0.811580). A numerically found tangency is never exactly a tangency. D
to the A-Lemma [24], this will become clearly visible for a suitable iterate, that is, whe
longer pieces of the manifolds are computed. Making sure\Wita0) and W=(0) have
tangencies along the entire computed arclength allows one to find the vaitievith any
precision. (We founa* ~ 0.811580, which is precise up to five digits.) Clearly, this als
requires one to computé&/t(0) and Ws(0) with sufficient accuracy. It is an interesting
observation that looking at long pieces\t (0) andW3(0) also allows one to check the
accuracy of the computed manifolds themselves. If one looks closely one notices tha
last loop of W5(0) just intersectdV!(0). On the other hand, the last loop ¥f“(0) just
missedV3(0). This is theoretically impossible, and it shows tidét(0) andW=(0) have not
been computed accurately over the entire prescribed arclength. The solution is to ct
higher accuracy, which would allow us to make sure that all computed tangencies lie ol
coordinate axes.

To give an idea of how the mesh depends on the curvature, Fig. 4 (right) show:
enlargement of the unstable manifold o= 0.811580. The points are not connected
show their distribution, which is clearly adapted to the curvature. Note that the dista
between neighboring points varies slightly because of the uncertainty faetfr2.

3.3.2. The IBV map.We consider a planar map of the complex plane, which we ¢
the IBV map modeling two independent blinking vortices in an infinitely large contain
with a thin layer of fluid (with possible injection or drainage of fluid at the vortices). Th
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FIG. 5. Homoclinic tangle of the fixed point, ~0.241988 of the conservative IBV map with the same
direction of rotation.l§; =b, =1, 4, = u, = 0.08; all branches computed up to arclength 100.)

map is a generalization of Aref’s blinking vortex map in [1, 17], which was introduced
an idealized model of chaotic mixing. Recently, the dynamics near one vortex was stu
in [30]. A vortex at the origin is described by the map

R.b(2) = bz exp(Zni %) R.5(0) = 0,

whereu specifies the amount of rotation at the unit circle, bBrd(0, co) models injection
or drainage of fluid. The IBV map is now obtained by considering two independent vorti
v1 at+1 andv, at —1. We first shift the point; to the origin, apply a vortex map, shift the
point v, to the origin, apply another vortex map, and finally shift the origin backtdn
other words, the IBV map is the composition

Dy by, by = T1o0 RM2=b2 oTzo RMLbl o Ty, 4)

whereT:(z) = z+cis the translation bg. The IBV map (4) is continuous, has a continuou
inverse orCC, and is differentiable o\ {+1, 1—2 exp(—xi u1b?/2) /b1 }. The map depends
on four real parameters and has rich dynamics. The conservativégasby = 1) with the
same direction of rotationu(; = u,) reduces to Aref’s blinking vortex map [1, 17]. The mar
studied in [30] can be interpreted as the limit, x, — 0 in a rescaled neighborhood of one
of the vortices. Note that the malpalso allows one to consider the case of counterrotatir
vortices {x1 = —u»), which does not seem to have been studied.

First we consider an example of the conservative case of corotating vortices stu
in [1, 17]. We setb; =b,=1 and u; = u2 =0.08, for which ® has the saddle point
79~ 0.241988. Its stable and unstable manifolds, both computed up to arclength 100, f
the homoclinic tangle shown in Fig. 5; compare Fig. 12 in [17]. Note that, by virtue of t
map, the unstable manifold is the image of the stable manifold under the symmetry tran
mationz+— —z. The size of the lobes of the homoclinic intersections determines how mt
fluid is transported between the two sides of the figure-eight-shaped region. The acct
of the computation i$ = 1073, amin = 0.2, &max= 0.3, (A&)min= 107>, (A)max= 1074,
andAnqin=5x 1073.
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FIG. 6. The strange attractor (left) of the dissipative IBV map with opposite directions of rotation attra
one branch of the unstable manifold of the fixed pag#s —1.49477— 3.17655 (right). (b, =1.05, b, =0.9,
u2=—pq =0.25; branch ofW" (xy) computed up to arclength 10,000.)

As a second example we choose a case of counterrotating vortices with injection
drainage, namelh; = 1.05, b, =0.9, andu, = —p1 = 0.25. Thend has the strange at-
tractor shown in Fig. 6 (left). This has been obtained with DsTool [2] by recording 20,(
iterates after discarding a sufficiently long transient. We computed one branch of
unstable manifold of the saddle poimi~ —1.49477— 3.17655 up to an arclength of
10,000. To keep the amount of data manageable we used the relatively low accura
8§ =103, ¢min="0.2, zmax= 0.3, (A®)min = 1072, (Ad)max=10"2, and Amin=5x 1073,
which resulted in a total of 289,594 mesh points. The manifold is shown in Fig. 6 (rigl
While it is attracted to the strange attractor, it spirals repeatedly and recursively into
center of the picture, before making spiraling excursions into the “fingers.” Hence, the
stable manifold gives better insight into the dynamics on the attractor. A very long piec
the manifold is needed in order to see excursions to the fourth finger. One can get an ic
the accuracy of the computation by noticing that the tips of all four fingers indeed coinc
with the respective tips of the attractor; compare the two panels of Fig. 6.

4. THE Q2D ALGORITHM

Quasiperiodically forced systems appear naturally in systems with two different peric
forcings of incommensurable frequencies. By taking the Poeoaap, or stroboscopic
map, corresponding to one of these frequencies, one obtains a discrete dynamical s

of the form
s U+ w
f(x)=<f1wx x>)’ ©)

where® € [0, 1) andx € R". Here,w € R\Q is the irrational ratio between the two frequen:
cies, andf; is periodic in® with period 1. Quasiperiodically forced systems have draw
special attention because they exhibit transitions to chaos via so-called strange noncl
attractors that seem to be unique to this class of dynamical systems; see [8, 29]. We cor
the casen = 2 such that (5) has a three-dimensional state space.
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Because of the quasiperiodic forcing, the smallest invariant sets of (5) are closed inva
curves that can be parametrizedthywWhen restricted to such an invariant circle, the syste
is just a rigid rotation with irrational rotation number. Let us assume that (5) has an
invariant circleH = {(¢, h(®) | ¢ €[0, 1)} of saddle type with a two-dimensional unstable
manifold, denoted byv"(H).

In order to comput&V'(H) we consider its intersection curves with planes of the for
Fo={(®,x)| 9 =0)}. These planes foliate the phase spacelj& R?. Because of the
special structure of (5), the linear foliati@f, }o<[o0,1) is f-invariant,H intersects each leaf
Fp in a unique point, andlvV¥(H) intersectsFy in a unique curve for alh € [0, 1).

The idea is now to grow the intersection curW$(H) N Fy simultaneously in a pre-
scribed number of leaves. We take a finite number of ledydsy choosing a mesM on
[0, 1), equally spaced for simplicity. As starting data we need to kikbm {F5}gcm, tO-
gether with the linear unstable directions given as vedidi®)}s<m . Both can be obtained
with the method in [3, 4, 22]. The manifold is represented in the form of th¢ Mgl cm
of sequence®, of points onW"Y(H) N F.

Again, we growW"(H) in steps, where in each step one point is addegbtth B for
all & € M. To this end, for eachh € M we need to find a poing that gets mapped into
Fp at distanceAy from the last point inP,. Because of the structure of (%), F5_,
so that we can findj in the unique curvéV'(H) N F,_,, by bisection just as for the 1D
algorithm. Note tha# —  will not be in the mestM. Therefore, we approxima'(H) N
Fo—w as a list of points,_,, by linear interpolation with its direct neighbors, sBy and
sz, by

. . 01— (0 —
Pyu(i) = ww#

(Py, (i) — Py, (D).
In P,_,, we now search fog exactly as we did in the 1D algorithm.

The distribution of points inP, is adapted to the curvature ¥Y(H) N Fy, such that
V\{},‘ (#) is a good approximation alV¥(H) N Fy; see Section 3.1. To ensure the quality o
the two-dimensional medgiP, }<\ we would like to have uniform growth in each leaf. This
is also important for keeping new points in neighboring leaves quite close together, wi
ensures the quality of the interpolated sequerges. Ideally, at stefk the distance\y of
the last point to the newly added point i is the same for ab € M. (Clearly, Ay must
be such that the accuracy‘d){)‘,‘(h(e)) is acceptable for ald € M.) However, a fold in the
manifold, requiring more mesh points or slower growth, is typically reached at differ:
arclength distances frofd in each leaf. Slowing to the speed in the “slowest” leaf creat
unnecessarily many mesh points in the other leaves.

To avoid producing too many points we proceed as follows. Note that in terms of the ir
quality the fundamental length scale is the distance between neighboring led¥g$0f,
(which is 1/|M| for an equally spaced mesh). At stkpwe determine the acceptable
distanceA, in P, for eachd € M. If Ax = mingcy Ay is still relatively large (compared to
the distance between neighboring leaves) then we grow the manifold for the same disi
Ag in each leaf. Otherwise, we allow variable steps, but such thagdpaX, is small
enough. This works particularly well if the manifold folds over the enfin@nge, but at
different arclength distances in different leaves; see Fig. 7 (left). We remark that permit
different A,-steps in different leaves also allows the two-dimensional manifold to conve
to an attractor.



GROWING 1D AND Q2D UNSTABLE MANIFOLDS OF MAPS 415

FIG. 7. The quasiperiodically forced étion map forA=0.1, b=0.68, andc=0.1 (left), and A=0.7,
b=0.77, andc = 0.1 (right). Initial data at 50 mesh points with the attractors (top), the cu&dd) N F, for
506-values (middle), and the manifold as a surface (bottom).

4.1. Examples of Q2D Manifolds
We illustrate the Q2D algorithm with the quasiperiodically forcezhdh map

D U +ow
flul=11+v-bu?+ Acos27®) |- (6)
v Cu

where we fixo = 1 (+/5 — 1). This map is studied in [29] and is used in [20] as an examp
for the general algorithm.
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Firstwe choos@& =0.1,b=0.68,ancc = 0.1. Then (6) has aninvariant cirdt¢ of saddle
type with a two-dimensional unstable manifold that is attracted to a pair of circles of pel
two, folding infinitely often in the process. We chose 100 equally spaced mesh poidts o
and computed the starting data with the method in [3, 4, 22]. Figure 7 (top left) shows
circle H with the linear stable and unstable directions, and the period-two attracting circ
For the accuracy parameters we used 0.01, amin = 0.2, amax= 0.3, (Aa)min = 1075,
(Ad)max=10"%, andAmin = 10~%. In order to keep the mesh squared, we brought back t
uncertainty factor te = 0.01. Figure 7 (middle left) shows the intersection curves of eve
second leaf, computed up to arclength 10. The manifold itself is shown in Fig. 7 (bot
left), where the gray bands show the steps taken in the Q2D algorithm. We previol
computed the same manifold with the general algorithm, but could only get to the sec
fold; compare Fig. 11 in [20]. With the Q2D algorithm we can compute many more fol
This is clear from Fig. 8 (left), which shows the intersection of the manifold With and
two enlargements thereof.

As a second example we choa8e=0.7, b=0.77, andc=0.1. Then the invariant cir-
cle H still exists, but there is now a strange (and chaotic) attractor; compare Fig. 1(c
[29]. Figure 7 (top right) shows the starting data and the attractor. We computed the
stable manifoldV"(H), again with 100 leaves and the same accuracy as above. Figu
(middle right) shows the intersection curves of every second leaf, again up to arcle
10, and Fig. 7 (bottom right) shows the manifold itself. As our computation shows,
unstable manifold converges to the strange attractor. The intersection of the unstable
ifold with Fo1 and two enlargements are shown in Fig. 8 (right). An approximation
the intersection of the strange attractor with; was found by iterating 1000 points. The
attractor intersects this leaf in what appears to be a curve, approximated by the bold dt
Fig. 8 (right). Animations showing how manifolds are grown by the Q2D algorithm can
found athttp://www.nat.vu.nl/vakgroepen/theorie/english/publications/
eprints/vuth98-21/vuth98-21.html.

4.2. Remarks on the General Case

The idea of growing the intersection curves of a two-dimensional unstable manifold v
a set of planes is also behind the general 2D algorithm in [20]. The general algorithm
be used for the special class of quasiperiodically forced systems, but the specialized
algorithm is superior. It is powerful and fast, because it is a true generalization of the
algorithm.

The special purpose Q2D algorithm performs better for the following reasons. In gene
any foliation of phase space by planesii invariant under the map. This means that wi
do not know a priori in which leaf we should look for the pointConsequently, we have
to do a more time-consuming 2D search. A major disadvantage of a 2D search is tha
lacks a clear direction in which to look fay starting at the preimage of the last point. If
the manifold folds sharply, then it is virtually impossible for the general algorithm to awvc
that the manifold grows “backward.” This is why the general algorithm stops at the sec
fold of the manifold in Fig. 7 (left); compare Fig. 11 in [20].

Finally, for a quasiperiodically forced system, the intersectiow8tH ) with a leafF
is a unique curve. For a general map, this is usually not true for any chosen linear folia
Locally nearH it can always be achieved, but as one graW$(H), the manifold may
become tangent to a leaf. At that point, a second intersection curve, not connected t
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FIG. 8. Intersections of the manifolds and the attractors in Fig. 7 with theAgaf(top), and enlargements
(middle and bottom).

first, appears in this leaf. In its current form, the general 2D algorithm in [20] misses 1
part of W!(H) and subsequently stops.
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